Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels.

نویسندگان

  • Navin Pokala
  • Qiang Liu
  • Andrew Gordus
  • Cornelia I Bargmann
چکیده

Recent progress in neuroscience has been facilitated by tools for neuronal activation and inactivation that are orthogonal to endogenous signaling systems. We describe here a chemical-genetic approach for inducible silencing of Caenorhabditis elegans neurons in intact animals, using the histamine-gated chloride channel HisCl1 from Drosophila and exogenous histamine. Administering histamine to freely moving C. elegans that express HisCl1 transgenes in neurons leads to rapid and potent inhibition of neural activity within minutes, as assessed by behavior, functional calcium imaging, and electrophysiology of neurons expressing HisCl1. C. elegans does not use histamine as an endogenous neurotransmitter, and exogenous histamine has little apparent effect on wild-type C. elegans behavior. HisCl1-histamine silencing of sensory neurons, interneurons, and motor neurons leads to behavioral effects matching their known functions. In addition, the HisCl1-histamine system can be used to titrate the level of neural activity, revealing quantitative relationships between neural activity and behavioral output. We use these methods to dissect escape circuits, define interneurons that regulate locomotion speed (AVA, AIB) and escape-related omega turns (AIB), and demonstrate graded control of reversal length by AVA interneurons and DA/VA motor neurons. The histamine-HisCl1 system is effective, robust, compatible with standard behavioral assays, and easily combined with optogenetic tools, properties that should make it a useful addition to C. elegans neurotechnology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels.

Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis el...

متن کامل

The potassium chloride cotransporter KCC-2 coordinates development of inhibitory neurotransmission and synapse structure in Caenorhabditis elegans.

Chloride influx through GABA-gated chloride channels, the primary mechanism by which neural activity is inhibited in the adult mammalian brain, depends on chloride gradients established by the potassium chloride cotransporter KCC2. We used a genetic screen to identify genes important for inhibition of the hermaphrodite-specific motor neurons (HSNs) that stimulate Caenorhabditis elegans egg-layi...

متن کامل

Identifying interacting proteins of a Caenorhabditis elegans voltage-gated chloride channel CLH-1 using GFP-Trap and mass spectrometry.

Chloride channels belong to a superfamily of ion channels that permit passive passage of anions, mainly chloride, across cell membrane. They play a variety of important physiological roles in regulation of cytosolic pH, cell volume homeostasis, organic solute transport, cell migration, cell proliferation, and differentiation. However, little is known about the functional regulation of these cha...

متن کامل

Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system.

Rhythmic movements are ubiquitous in animal locomotion, feeding, and circulatory systems. In some systems, the muscle itself generates rhythmic contractions. In others, rhythms are generated by the nervous system or by interactions between the nervous system and muscles. In the nematode Caenorhabditis elegans, feeding occurs via rhythmic contractions (pumping) of the pharynx, a neuromuscular fe...

متن کامل

avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans.

Ivermectin is a widely used anthelmintic drug whose nematocidal mechanism is incompletely understood. We have used Caenorhabditis elegans as a model system to understand ivermectin's effects. We found that the M3 neurons of the C.elegans pharynx form fast inhibitory glutamatergic neuromuscular synapses. avr-15, a gene that confers ivermectin sensitivity on worms, is necessary postsynaptically f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 7  شماره 

صفحات  -

تاریخ انتشار 2014